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This paper presents a composite parameter optimization method based on the chaos particle swarm optimization and the back
propagation algorithms for a fuzzy neural network/proportion integration differentiation compound controller, which is applied
for an aerial inertially stabilized platform for aerial remote sensing applications. Firstly, a compound controller combining both
the adaptive fuzzy neural network and traditional PID control methods is developed to deal with the contradiction between the
control precision and robustness due to disturbances. Then, on the basis of both the chaos particle swarm optimization and the
back propagation compound algorithms, the parameters of the fuzzy neural network/PID compound controller are optimized
offline and fine-tuned online, respectively. In this way, the compound controller can achieve good adaptive convergence so as to
get high stabilization precision under the multisource dynamic disturbance environment. To verify the method, the simulations
are carried out. The results show that the composite parameter optimization method can effectively enhance the convergence of
the controller, by which the stabilization precision and disturbance rejection capability of the proposed fuzzy neural
network/PID compound controller are improved obviously.

1. Introduction

Aerial remote sensing has an increasing attention in envi-
ronmental applications: disaster monitoring, intelligent agri-
culture, pollution detection, etc. Natural disasters appear in
characteristics of high frequency and intensity and often
result in huge losses in their area of destruction [1]. There-
fore, gathering information and continuously monitoring
the affected areas are crucial to assess the damage and speed
up the recovery process [2]. Remote sensing technologies can
take a significant place for decision-makers for the calcula-
tion and estimation of the environment impacts [3]. On the
other hand, precision agriculture includes various technolo-
gies that allow agricultural professionals to use information
management tools to optimize agriculture production [4].

The agricultural practices, planting patterns, the stage of
growth in the vegetation, soil composition, and humidity
are important factors that affect the present-day visibility of
buried structures such as crop or soil marks [5]. There are
great challenges for accurate predictive mapping at regional
scales for an agroecosystem [6]. Remote sensing technologies
offer opportunities to break down the silos between energy,
water, and resource management through cheaper, auto-
mated, and high spatiotemporal resolution data collection.
Remote sensing via aerial (i.e., manned or unmanned) vehi-
cles generally allows for more detailed spatial resolution than
satellite measurements [7].

Inertial stabilized platform (ISP) is a key component
for an aerial remote sensing system, which is mainly used
to hold and control the line of sight (LOS) of the imaging
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sensors keeping steady in an inertial space [8–13]. For a
high-resolution aerial remote sensing system, it is crucial
to isolate the attitude changes of aircraft in three axes and
to reject the multisource disturbances inside or outside of
the aircraft body in real time. The first fundamental objective
of an ISP is to help the imaging sensors to obtain high-quality
images of the target or target region. Therefore, the most crit-
ical performancemetric for an ISP is the disturbance rejection.

Many different control methods with high accuracy and
stability are developed through suppressing various distur-
bances. In [14], a dual-rate-loop control method based on the
disturbance observer (DOB) of angular acceleration is pro-
posed to improve the control accuracy and stabilization of
the ISP. In [15], a self-adaptiveonline genetic algorithmtuning
is proposed to optimize the proportion integrationdifferentia-
tion (PID) parameters of the ISP, which improve the system
control precision and stability and response speed. In [16], a
self-tuning fuzzy/PID control strategy is proposed to improve
the dynamic performance of the ISP. In [17], an automatic dis-
turbance rejection controller (ADRC) is proposed to solve the
issues such as system model uncertainty and measurement
noise in a three-axial ISP control system. In [18], a method
combining a Kalman filter and a disturbance observer is
put forward to improve the inertial stabilization per-
formance of an aerial photoelectric platform. In [19], a
compound control strategy combining the extended distur-
bance observer (EDO) and continuous robust integral of the
sign of error (RISE) is proposed to improve the stability pre-
cision of an ISP. In [20], an integrated control method using
both feed-forward control and disturbance observer is
designed to improve the stabilization precision of the ISP.

As an intelligent control method, the fuzzy control is a
non-open-loop control system that is based on fuzzy logic
inference. It is especially suitable for the control of nonlinear,
time-varying, and delay systems [21]. The control perfor-
mance of the system depends on the parameter setting, so it
is not easy to achieve the desired control effect [22]. Although
the PID regulator can get higher steady-state accuracy
and dynamic characteristics, the parameter tuning is diffi-
cult. The determination of the conventional PID controller
parameter tuning is based on obtaining the mathematical
model of controlled objects and the rules, which is difficult
to adapt to complex control systems [23]. Comparatively,
the fuzzy control method is a kind controller of language,
which can reflect the approximate optimal control behavior
of controller and have strong robustness and stability to
adapt to different object controls [24]. Therefore, the method
combining both the adaptive fuzzy and the traditional
PID control methods should be developed to solve the con-
tradiction between the control precision and robustness
on disturbances.

However, the method of fuzzy controller essentially is
a nonlinear controller whose control algorithm is based
on intuition and experience on the plant; it does not have
any automatic learning capabilities to handle the un-
certainty. It is well known that the adaptive neural net-
work (NN) control has a learning capability and has
been considered as a powerful tool to identify any nonlin-
ear function to any desired accuracy in control and

applications for nonlinear systems [25]. Therefore,
although it is a particularly difficult problem for the fuzzy
system to determine the membership function, the input-
output of the NN can approximate any function. So in
the fuzzy system design, it can take advantage of the learn-
ing ability of the NN and operation by adjusting the
weight membership functions in learning [26]. However,
the parameters of the existing fuzzy neural network
(FNN)/PID controller are large and the initial value has a
great influence on the convergence of the controller; it is dif-
ficult to find a good initial value of parameters in the practical
application to the ISP to get a good control effect. Therefore,
it is difficult to obtain more suitable initial values of parame-
ters by the ordinary trial and error method. So it is necessary
to investigate the parameter optimization algorithms to
obtain better parameters for the system.

The particle swarm optimization (PSO) is a compu-
tational intelligence-oriented, stochastic, population-based
global optimization technique [27]. It is concerned with
the elementary algorithm, which has the characteristics of
simplicity, easy implementation, and few parameters to
be adjusted [28]. However, the PSO seems to be sensitive
to the tuning of its parameters [29]. These advantages lead
PSO to be applied broadly to different areas. For the basic
PSO, the result easily falls into the local optimum with
random initial choice, because of the nonuniform distribu-
tion of initial particles, which will weaken the global
search ability of the PSO. Once getting trapped in local
optimum during the process of optimization, it is very
easy to cause all particles to stagnate in the extreme value
point [30]. Therefore, when the algorithm runs into pre-
maturity, the random perturbation strategy is adopted for
the best individual and the randomly selected individual
to help them being out of the local minimum [31]. Since
the PSO has the drawback of stopping optimizing when
reaching a near-optimal solution [27], the chaos mecha-
nism is proposed to help the PSO to optimize the search-
ing result. Thus, an improved algorithm based on the
mechanism of chaos and the PSO, i.e., the chaos particle
swarm optimization (CPSO) algorithm, is proposed to
adjust the parameters offline. In [32], the chaos searching
is proposed for global optimization problems and parame-
ter inversion of the nonlinear sun shadow model, which
can improve the computing accuracy and computing effi-
ciency of the global optimization problems. In [33], the
chaos is applied to avoid the untimely aggregation of par-
ticle swarm and improve the mean best of the algorithm
and the success rate of search. In [34], a chaotic searching
is applied to improve the global search performance, and
the applying results show that the CPSO algorithm is very
efficient at solving global optimization problems and is a
good approach for reliability analysis. Furthermore, the
back propagation (BP) algorithm is used to adjust online
to obtain the optimized parameters. In this way, the con-
trol system can achieve better control results.

In this paper, to improve the ability of disturbance rejec-
tion of an aerial ISP, an FNN/PID compound control scheme
is first designed. Then, a composite parameter optimization
method based on the CPSO and BP algorithms is proposed
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to improve the adaptive convergence performance of the
compound controller. To verify the method, the simulations
are carried out.

2. Background

2.1. Aerial Remote Sensing System. Figure 1 shows a sche-
matic diagram to illustrate the important effect of the
ISP on improving the image quality in an aerial remote
sensing system for aerial remote sensing applications.
Due to the serious influences caused by disturbances aris-
ing from diverse sources, including inside or outside of the
aviation platform, it becomes very difficult to keep the
LOS steady, particularly for the case of the jitter of three
angular attitudes of an aircraft. Thus, the case of unideal
images replacing the ideal images will occur. So the
high-precision ISP, which is typically mounted on a movable
platform, is indispensable to isolate disturbances derived
from diverse sources [9, 12].

Figure 2 shows the schematic diagram of an aerial remote
sensing system. Generally, an aerial remote sensing system
consists of four main components: a three-axis ISP, a remote
sensing sensor, a position and orientation system (POS), and
anaviationplatform.When theaviationplatformrotatesor jit-
ters, the control system of three-axis ISP gets the
high-precision attitude reference information measured by
the POS and then routinely controls the LOS of the

imaging sensor to achieve accurate pointing and stabilizing
relative to ground level and flight track. The POS, which is
mainly composed of the inertial measurement unit (IMU),
the GPS receiving antenna, and the data processing system,
is used to measure the minor angular movement of the ima-
ging sensor.

2.2. Operating Principle of Three-Axis ISP System. Figure 3
shows the schematic diagram of the three-axis ISP’s prin-
ciple. We can see that the ISP consists of three gimbals,
which are azimuth gimbal (A-gimbal), pitch gimbal
(P-gimbal), and roll gimbal (R-gimbal). Among them, the
A-gimbal is assembled on the P-gimbal and can rotate
around the Za axis. Likewise, the P-gimbal is assembled
on the R-gimbal and can rotate around the Xp axis. The
R-gimbal is assembled on the basement and can rotate
around the Yr axis.

From Figure 3, we can see the relationships between the
three gimbals: Gp, Gr , and Ga, respectively, which stand for
the rate gyro that measures the inertial angular rate of P-gim-
bal, R-gimbal, and A-gimbal. Er , Ep, and Ea, respectively,
stand for the photoelectric encoder which measures relative
angular between gimbals. Mr , Mp, and Ma, respectively,
stand for the gimbal servo motor which drives R-gimbal,
P-gimbal, and A-gimbal to keep these three gimbals steady
in an inertial space.

2.3. Three Closed-Loop Compound Control Scheme. Figure 4
shows the block diagram of the traditional three-loop con-
trol system for ISP. Conventional stabilization techniques
employ rate gyros, rate integrating gyros, or rate sensors to
sense rate disturbances about the LOS. In Figure 4, the
blocks of G-pos, G-spe, and G-cur separately represent the
controllers in the position loop, speed loop, and current
loop; the PWM block represents the power amplification
used for the current amplifier to drive the torque motor; L
represents the inductance of a torque motor, and R repre-
sents the resistance; Kt represents the torque coefficient of
the motor, and N is the transition ratio from the torque
motor to the gimbals; Jm represents the moment of inertia

Jitter and vibration
of actual motion

Ideal motion trajectory
Image distortion Ideal image

Figure 1: Schematic diagram: effect of the ISP on improving the image quality in an aerial remote sensing system for aerial remote
sensing applications.
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Figure 2: Schematic diagram of an aerial remote sensing system [44].
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of the motor, and J l represents the moment of inertia of the
gimbals along the rotation axis.

3. Design of the FNN/PID
Compound Controller

In the FNN/PID control method, the input interface has two
nodes, i.e., the error (e) and change of the error (ec), respec-
tively. The role of the fuzzification layer is to make the input
of a reasonable fuzzy segmentation, in which the number of
nodes is equal to the number of variables [29]:

f1 i = X = x1,… , xn , n = 2, 1

where X stands for the domain.
When the method is applied to the ISP, the fuzzy lan-

guage of each input variable is divided into seven seg-
ments. According to the working principle of the ISP,
different Gauss functions and bell functions are used to
represent the different fuzzy subsets which are expressed

as follows:

f 2 i, j = μAij = exp
− Xi − cij

2

σ2
ij

, i = 1, 2, j = 2, 3, 4, 5, 6,

2

f i, j = μAij =
1

1 + Xi − cij /aij
2σ2i j

, i = 1, 2, j = 1, 7,

3

where Xi stands for the input variable; c and σ stand for
the activation function centers and widths, respectively;
and a stands for the fuzzy subsets corresponding to fuzzy
variables. For the different fuzzy subsets, the different
membership functions should be chosen. In (2), i.e., the
Gaussian function’s marginal value and middle value are
close to 0 and 1, respectively, which is suitable for the
fuzzy subset with a large membership degree of intermedi-
ate element. In (3), i.e., the bell function’s marginal value
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Figure 3: Schematic diagram of the three-axis ISP’s principle.
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is close to 1, which is suitable for the fuzzy subset with a
large membership degree of the boundary element [35].

Different from the general FNN/PID control algorithm
that sets up a relatively simple activation function, the
improved methods of membership function parameters are
diverse from each other. This control method absorbs the
experience of fuzzy/PID control in the membership function
design. Therefore, it is more suitable for the system charac-
teristics of the ISP, and its parameters are no longer updated
and adjusted in the BP algorithm. Thus, the blindness of
parameter updating is avoided, which further results in a
short computing time and a good control effect.

Corresponding to the ISP system, the number of the
nodes of the fuzzy rule layer is 49, and the method of fuzzy
inference is as follows [36]:

f3 j =
N

j=1
f2 i, j = μA1k x1 ∗ μA2k x2 ,

N =
n

i=1
Ni,

4

where k is the number of fuzzy rules.
For the output layer, it can be obtained by the output of

the upper layer and the connection weight, as shown as fol-
lows [32]:

f4 j =w ⋅ f3 = 〠
N

j=1
w i, j ⋅ f3 j , 5

where w stands for the connection weight matrix.
The output of the improved FNN/PID controller is used

as the compensation of the constant PID parameters, as
shown as

Kp = Kp0 + FNN ΔKp ,
Ki = Ki0 + FNN ΔKi ,
Kd = Kd0 + FNN ΔKd ,

6

where Kp0, Ki0, and Kd0 represent the initial parameters
of the fuzzy/PID controller and FNN ΔKp , FNN ΔKi ,
and FNN ΔKd represent the outputs of the improved
FNN/PID controller.

So the output of the controller is expressed as follows:

u k == kp e k − e k − 1 + ki 〠
k

i=1
e i + kd e k − e k − 1

7

The improved FNN/PID controller controls the ISP by
adding the PID value of real-time adjustment and the fixed
PID value. In this case, the FNN can only deal with the small
change which reduces the dependence on the initial value
and makes the adjustment time shorter. Because the whole
system is not entirely dependent on the output value of the

adaptive adjustment part, it can guarantee the stability and
avoid the divergence.

The improved FNN/PID controller only needs to deter-
mine the weights of the controller, since it uses fuzzy/PID
controller’s fuzzy subset number, membership function,
quantization factor, and constant PID parameter value. Since
the output of the method is small, the effect of the initial value
of the weight coefficient on its output is limited. Thus, the
superior control effect can be obtained by only the randomly
obtained parameters. Figure 5 shows the schematic diagram
of the FNN/PID compound controller structure.

4. Composite Parameter Optimization Based on
CPSO and BP Algorithms

The FNN/PID controller inherits the advantages of fuzzy
control in acquiring knowledge, which has the ability of the
neural network to approach any nonlinear function at the
same time. However, the parameters of this method are large
and the initial value has a great influence on the convergence
of the controller; it is difficult to find a good initial value of
parameters in the practical application for the ISP to get a
good control effect. The general FNN/PID controller is diffi-
cult choosing the initial value which influences the improve-
ment of the control accuracy and the convergence.

If the control level of the FNN/PID controller is expected
to improve, configuring a series of parameters which are
more appropriate is necessary. Thus, the parameter opti-
mization problem is the key to the control effect of the
controller. The structure of the controller is a forward
neural network, which can adapt to the control request
of the controlled object by adjusting the weight of the net-
work itself. At the initialization stage of the algorithm, the
position of the particle is initialized by chaos. The weight
coefficients are encoded as vectors and expressed as Para.
The number of particle swarm optimization is selected as
N . Chaos initialization is applied to randomly produce n-
dimensional vectors z1 = z11, z12,⋯, z1n , which is formed
from zi+1j = μzij 1 − zij j = 1, 2,⋯, n, i = 1, 2,⋯,N − 1 and
carried to the range of optimized variable xij = aj + bj − aj
zij j = 1, 2,⋯, n, i = 1, 2,⋯,N − 1 as the position of initial-
ized particle swarm. In addition, the other system parame-
ters, including acceleration constants, the maximum inertia
weight, and the minimum inertia weight, are assigned to
the numerical value based on other academic papers, in
which the values of c1, c2, wp max, and wp min are 2, 2, 1.2,
and 0.4, respectively.

4.1. Particle Swarm Optimization Algorithm (PSO). If the
neural network is used as the controller in the control system,
the astringency of the training algorithm depends largely on
the choice of the initial weights of the network and the gen-
eral approach is cut-and-trial. However, it is difficult to
achieve for complex problems. It will directly lead to the poor
parameter setting for the controller and poor control quality.
Therefore, it is very important to optimize the weights of the
network by using the optimization algorithm. For the offline
optimization of the controller parameters, an improved
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algorithm based on the mechanism of chaos and the PSO, i.e.,
the CPSO, is proposed.

The PSO adopts the velocity-position model and sets the
reasonable inertia weight to balance the global and local
search to make the algorithm easier to converge to the opti-
mal or optimal solution. The standard PSO algorithm formu-
las are shown as (8) [26].

Vi =wp ∗ Vi + c1 ∗ rand ∗ pbest − Posi
+ c2 ∗ rand ∗ gbest − Posi ,

Pos = Posi + Vi,
8

where i = 1, 2,… , n; n stands for the total number of particles
in the population; Vi stands for the moving rate; wp stands
for the inertia weight whose range of value usually is
0.4~1.2; Posi stands for the position of the particle; pbest is
the location of the best solution in iteration; gbest stands
for the location of global best solution; rand stands for a
random number between 0 and 1; and c1 and c2 stand for
the acceleration constants. The values of c1 and c2 are 2, which
are determined on the basis of the existing research [37].
The position and velocity of a particle in an n-dimensional
space can be expressed as Posi = Pos1, Pos2,⋯, PosN and
Vi = v1, v2,⋯, vN , respectively. The fitness function is cal-
culated by the method of self-defined objective function.
The fitness value of each particle in each iteration is calcu-
lated according to the demand. The optimal value of each
particle which is searched by itself currently, and the optimal
value in the current population should be stored for dynam-
ically adjusting as experience. According to the characteris-
tics of the determining effect of the system, the fitness
function associated with the time is required. So the integral
of the absolute value of error multiply time is adopted as the

criterion which is also called the ITAE index. The system can
obtain the advantages such as fast, smooth, and small over-
shoot under the ITAE index. Its expression is as follows:

J =
t

0
t e t dt 9

The inertia weight is generally linear decreasing weight
algorithm as shown in the following formula:

wp iter =wp max −
wp max −wp min
Iter max ∗ iter , 10

where Iter max stands for the largest evolutionary algebra, iter
stands for the algebra, wp max and wp min stands for the maxi-
mum inertia weight and the minimum inertia weight, respec-
tively. The introduction of wp significantly improves the
performanceof thePSOalgorithmsuch as adjusting the search
ability of particles in global and local. Also, the introduction of
wp offsets the problem of the standard PSO algorithm and
makes it apply to more practical problems [31]. Figure 6 illus-
trates the overall view of particle swarm optimization.

In accordance with the above algorithm, the particle con-
tinuously updates its velocity and position in the preset solu-
tion space and ultimately converges to a suboptimal or
optimal location.

4.2. Offline Tuning Based on the CPSO. The chaos is a univer-
sal phenomenon in a nonlinear system. The chaos phenom-
enon has stochastic property, ergodicity, and regularity. In
the optimization area, the ergodic property can be used as
an optimization mechanism to escape from local optimums.
The chaos has been a kind of novel global optimization tech-
nique. People pay much attention to the research of the
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Figure 5: Schematic diagram of the FNN/PID compound controller structure.

6 Journal of Sensors



www.manaraa.com

optimization method based on the chaotic search [29, 31, 36,
38]. At present, some scholars have applied it to the optimi-
zation of neural network weights and achieved good results.

Based on the three inherent properties of the chaos,
including stochastic property, ergodicity, and regularity
[39], the new superior individuals are reproduced by chaotic
searching on the current global best individuals. For the
regularity and ergodicity property, the chaos searching can
traverse all states without repeating within a certain range.
For the stochastic property applied to selection of individual,
a stochastic selected individual from the current population
is replaced by the new superior individual. The particle
swarm optimization-embedded chaotic search quickens the
evolution process and improves the abilities to seek the global
excellent result and convergence speed and accuracy.

The chaotic motion is usually generated by a logistic map
which is illustrated as follows:

Xc n + 1 = μXc n 1 − Xc n ,
 n = 0, 1, 2,… ,M 0 < Xc 0 < 1 ,

11

where μ stands for the control parameter whose range of
value is (0, 4). The value of the chaotic control parameter μ
is larger, the chaotic degree is higher, and the population
structure has suffered more destructive. In the running pro-
cess of the CPSO algorithm, the control parameters should
be dynamically reduced or increased on the basis of the con-
vergence of the population, which can reduce the structural

damage to the population and help population escape from
local optimizations. In engineering applications and aca-
demic studies of CPSO, the value range of the chaotic control
parameter μ is usually from 0 to 4 [40]. The chaotic motion is
very sensitive to the initial value selection, and the different
initial values will be different.

The basic principle of the CPSO algorithm is that chaos
initialization is adopted to improve individual quality and
chaos perturbation is utilized to avoid the search being
trapped in local optimum [31]. The process of the CPSO is
conducted as follows:

Step 1. Encode the optimized parameter. The weight coeffi-
cients are encoded as vectors and expressed as Para. The
number of particle swarm optimization is selected as N . Ran-
domly produce n-dimensional vectors as z1 = z11, z12,⋯,
z1n . Initialize the particle’s position with logistic chaos map-
ping as xij = aj + bj − aj zij j = 1, 2,⋯, n, i = 1, 2,⋯,N − 1
which is formed from zi+1j = μzij 1 − zij j = 1, 2,⋯, n, i =
1, 2,⋯,N − 1 which is carried to the range of optimized
variable.

Step 2. Initialize the system parameters, including c1 = c2 = 2,
wp max = 1 2, and wp min = 0 4.

Step 3. In chaos-aided search, this paper sets appropriate
iteration times λco and small value ξco as triggers for sharp
tuning of chaos. When the CPSO search accuracy is less
than ξco in the λco iterations, save the current parameter to
Pnow , and assign it to the initial value of the chaotic search
P0, P0 = Pnow . Randomly initialize the chaotic variable E in
the range of (0,0.5) (the logistic map is symmetric in the
range of (0,1), and the dimension is consistent with Pnow .
Define i = 0. Use the following two equations to generate
new parameter values [30]:

P0 i + 1 = P0 i + αco 2Xc i − 1 ,
Xc i + 1 = 4Xc i 1 − Xc i , i = i + 1,

12

where αco is the search radius and the system can traverse
the search in a larger range by adjusting the value of αco.
However, it is more time-consuming. Through this step, it
is expected that the particle velocity and particle position
have a proper update value. So the role of αco is only
sharp tuning and generally takes smaller values. If a better
value is obtained which can be saved as Pb, otherwise, αco
should be adjusted.

Chaos phenomena widely existing in nonlinear systems
have stochastic property, ergodicity, and regularity, which
are widely applied in chaotic search to obtain optimized
solution [41]. Chaos has also been used to optimize the
weight of a neural network. The chaotic motion is mainly
generated by the logistic map. The traversal trajectory is
directly affected by the initial value. A slightly different
initial value will directly cause the variations of the tra-
versal trajectory. Therefore, the appropriate initial value
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Figure 6: Overall view of particle swarm optimization.
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of initial parameters has a significant impact on the reduce
time-consuming. So we have chosen the appropriate initial
value for relevant parameters and initialized the position
of the particle by chaos before running the fuzzy neural net-
work/PID compound algorithm. In this way, a PC com-
puter can meet the computation.

Step 4. The chaos strategy is enlargement as the end of the
PSO algorithm. In the early stage of search, PSO tends to
converge faster, but in the later stage, it is easy to be
trapped by local optimizations. Chaos could escape from
local optimizations and approach the global optimizations.
In the CPSO algorithm, the chaotic method is applied to
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Figure 7: Flowchart of online adjustment of the BP algorithm.
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randomly generate particles in the initialization stage.
Based on the standard PSO, the chaotic search strategy is
applied in two stages, which assists the PSO in searching
optimizations in the first stage, extends their search scopes
at the beginning of the second stage, and avoids getting
into local optimizations, escape from local optimizations,
and approach the global optimizations at end of second stage
[42]. The chaos optimization is very time-consuming, and if
it is applied in a large scale, so the last step is auxiliary in the
global scope. This step is the real search. With the aid of

chaos, the CPSO searches for a set of parameter values which
are denoted as Pf . Use the following two equations to opti-
mize again:

Pf i + 1 = Pf i + βco 2Xc i − 1 ,
Xc i + 1 = 4Xc i 1 − Xc i , i = i + 1

13
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saved as Pfinal. If the accuracy is up to standard, the optimiza-
tion is over. Otherwise, parameters should be recalculated by
adjusting βco.

λco can refer to the total number of iterations of the
CPSO algorithm. Its interval does not need to be too
dense for designing to assist particles out of the local
small. ξco generally refers to smaller values of the fitness
function in the possible range. When the fitness value is
difficult to be better, the particles can be adjusted by cha-
otic motion in order to obtain new searching ability. αco
and βco play an important role in supporting and should
ensure that the results do not exceed the solution space
of the optimization variables in order to avoid waste of
computing resources. At the same time, the value of them
should be ensured small to guarantee the chaos optimiza-
tion is kept in a small range.

4.3. Online Tuning Based on the BP Algorithm. The BP algo-
rithm is used to adjust the online simulation when the
parameters of the offline suboptimal controller are obtained.
The results of offline are close to the optimal values, because
of the BP algorithm which is adjusted on the basis of the ini-
tial parameters. Therefore, it is necessary to obtain better ini-
tial suboptimal parameters in order to ensure real-time
online adjustment. The online BP algorithm adjustment is
adjusted according to the following formulas [38]:

c n + 1 = c n + xite ∗ ∂E
∂c

+ η ∗ Δc n ,

σ n + 1 = σ n + xite ∗ ∂E
∂σ

+ η ∗ Δσ n ,

wall n + 1 =wall n + xite∗ ∂E
∂wall

+ η∗Δwall n ,

14

where wall is the weight matrix of the BP network; xite and η
stand for learning factor and momentum factor, respectively;
and E stands for the mean squared error (MSE) calculated
with the function as E = 1/2 rin k − yout k 2 [43]. The
processing is shown in Figure 7.

5. Simulation Model

Figure 8 shows the three-dimensional CAD model for a
three-axis ISP and its gimbal transmission system. Figure 9

shows the simulation diagram of the CPSO offline for the
FNN/PID compound controller. The simulation model is
built to simulate the whole ISP system under friction distur-
bance which represents the effect of the main disturbance on
control precision. When the PSO and the CPSO are used to
optimize the initial value of the weight coefficient offline,
the optimization program should be written in the file as
the optimizer. The controller outputs the parameters to the
block diagram with the program to constantly update the
value of w0. It also outputs the value of time multiplied by
the integral of the error absolute value to the optimizer.
The controller determines the control effect and then calcu-
lates the optimization algorithm. In addition, all chosen
parameters for the model have been gathered in Table 1 for
quick and easy reference.

6. Results and Analysis

6.1. FNN/PID Controller Based on the CPSO. In this paper,
the RMS is the abbreviation of the “root mean square”
error of the angles in a period of time, which is an error
result, calculated from the angle values shown in
Figure 10. In Figures 11 and 12, the horizontal axis repre-
sents the iteration times in the optimization process that
are dimensionless, and the vertical axis represents the fitness
values which are the effect of parameter optimization that
are also dimensionless.

As it is seen in Figure 10, after the initial value of the
weight coefficient of the FNN/PID controller is optimized
by the CPSO algorithm, step response overcomes the oscil-
lation problem held by the trial and error method. The
overshoot in the CPSO method is reduced from 1.3° RMS
to 0.07° RMS with a great decline extent of 94.62%. How-
ever, the stability of the system is decreased somewhat
which is vibrated in a small error range of 0–0.01° RMS.
For the whole range, the RMS error between 0 and 30 sec-
onds is 0.1453° RMS.

As shown in Figure 11, the optimum individual fitness is
larger at the previous stage which proves that the control
method is not easy to converge. In addition, the change of
the optimum individual fitness is small at the end of the
iteration whose optimal value at the end of the iteration
is 0.5718.

Table 1: Chosen parameters for the model.

Parameter name Parameter symbol Value

The error input interface in FNN/PID control method e [−48, 48]
The error change of input interface in FNN/PID control method ec [−4, 4]

The scaling factors of the fuzzy/PID controller Kp0, Ki0, Kd0 1, 0.005, 0.05

Chaotic control parameter μ [0, 4]

Acceleration constants c1, c2 2

Inertia weight wp [0.4, 1.2]

Iteration times λco 100
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The parameter optimization method improves the
performance of the system by traversing all parameters to
optimize the parameters. However, it is fundamentally based
on the principle of random, and the result can only be
guaranteed to be suboptimal. So the method needs further
improvement which has not obtained ideal results while
using in the ISP. In addition, the optimization algorithm
has a long design cycle, and the optimization process is
time-consuming. Therefore, it is desirable to design a
FNN/PID control method which can achieve a very good
control effect without optimization.

6.2. FNN/PID Controller Based on the Composite Parameter
Optimization. In this paper, the numerical results on the
stabilization precision obtained three different methods,
including the proportion integration differentiation (PID),
the fuzzy neural network (FNN)/PID compound controller

based on trial and error method, and the FFN/PID based
on chaos particle swarm optimization (CPSO) and the
back propagation (BP) algorithms, responding to the step
input, are compared together. Compared with the PID,
from 0 s to 30 s, the error of the stabilization precision of
the FFN/PID based on the trial and error method is
0.0432°, which is decreased up to 53.6% than that of the
PID (which is 0.0931°). The errors of the stabilization preci-
sion of the FFN/PID based on CPSO and the BP algorithms
are 0.0214°, which is decreased up to 77% than that of the
PID. Compared with the FFN/PID based on the trial and
error method, the errors of the stabilization precision of the
FFN/PID based on CPSO and the BP algorithms have
decreased up to 50.5%. From above, it can be concluded that
the FNN/PID compound controller can achieve the high sta-
bilization precision with good disturbance rejection ability.-
Table 2 shows the numerical results on the stabilization
precision obtained by three different methods responded to
the step input.

Figure 12(a) shows that the control effect has been con-
siderably improved which demonstrate the effectiveness of
the improved FFN/PID approach. And then, the optimal
individual fitness in the optimization process is shown in
Figure 12(b); the control system is indeed able to find bet-
ter individual fitness values with the increasing of itera-
tions. In addition, the difference in the magnitude of the
fitness values is always small and the variation of optimum
fitness is less than 0.0001°. Therefore, it can be shown that
the improved FNN/PID control algorithm has less depen-
dence on the initial value of the weight coefficients and is
easy to obtain good control results. Based the analysis of
theory and simulation, the feedback response times of
the speed loop and position loop of FNN/PID control sys-
tem are 0.617 s and 1.376 s, respectively.

7. Conclusion

In this paper, to improve the convergence of the fuzzy neural
network (FNN)/proportion integration differentiation (PID)
compound controller applied for an aerial inertially stabilized
platform, a composite parameter optimization method is
proposed. Based on both the chaos particle swarm optimiza-
tion (CPSO) and the back propagation (BP) algorithms, the
controller parameters are optimized offline and fine-tuned
online together. In this way, the FNN/PID compound con-
troller can realize excellent adaptive convergence so as to
high stabilization precision under multisource dynamic dis-
turbances. To verify the method, the simulations are carried
out. The main conclusions are as follows:

(1) The results show that depending on the proposed
composite parameter optimization method, the
FNN/PID compound controller can reach good abil-
ity in self-learning and self-adaptation, by which the
high stabilization precision with good disturbance
rejection ability is achieved

(2) Compared with the PID, the FFN/PID methods
have excellent stabilization precision and the
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disturbance rejection ability. Furthermore, com-
pared with the FFN/PID based on the trial and
error method, the FFN/PID based on the composite
parameter optimization method is more prominent,
by which the stabilization precision is improved up
to 50.5% than the former

(3) The CPSO algorithm has strong global search capa-
bility, which could escape from local optimizations

and approach the global optimizations, by which
the FNN/PID compound controller can realize
excellent adaptive convergence

Nomenclature

BP: Back propagation
c1, c2: Acceleration constants
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Table 2: The numerical results on the stabilization precision obtained three different methods responding to the step input.

Control methods 0–30s
Improvement (%)
FFN/PID vs. PID

Improvement (%) FFN/PID with optimized
parameters vs. FFN/PID with unoptimized parameters

PID/RMS (°) 0.0931 — —

FFN/PID based on trial and error method/RMS (°) 0.0432 53.6 —

FFN/PID based on composite parameter
optimization method/RMS (°)

0.0214 77.0 50.5
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c, σ: The centers and widths of activa-
tion function

CPSO: Chaos particle swarm
optimization

e: The error input interface in the
FNN/PID control method

Ex, Ey, Ez: Photoelectric encoders installed
on R-gimbal, P-gimbal, and
A-gimbal

Er , Ep, Ea: Photoelectric encoder measuring
relative angular between gimbals

ec: Theerrorchangeof input interface
in the FNN/PID control method

FNN: Fuzzy neural network
Gp, Gr, Ga: Rate gyros measuring the iner-

tial angular rates of P-gimbal,
R-gimbal, and A-gimbal

G-pos, G-spe, and G-cur: The controllers in the position
loop, speed loop, and current loop

ISP: Inertially stabilized platform
PID: Proportion integration

differentiation
J l: The moment of inertia of the

gimbals along the rotation axis
Jm: The moment of inertia of the

motor
k: Constant of exponential reach-

ing law representing reaching
speed

Kp0, Ki0, Kd0: The initial parameters of the fuz-
zy/PID controller

Kt : The torquecoefficientof themotor
kT : Torque coefficient of motor
L: Inductance of torque motor
Mr, Mp, Ma: Gimbal servo motors of R-gim-

bal, P-gimbal, and A-gimbal
N : Transmission ratio
Posi: The position of a particle
R: Resistance of torque motor
Vi: The velocity of a particle
w: Connection weight matrix
wall: The weight matrix of the BP

network
wp: Inertia weight
wp max,wp min: The maximum inertia weight and

the minimum inertia weight
Xi: The input variable of Gaussian

function and bell-shaped
function

μ: The control parameter of the
chaotic motion

αco: Search radius
λco: Iteration times
ωs: Critical Stribeck speed.
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